Aumentar la alcalinidad oceánica para eliminar dióxido de carbono del aire


Esta tecnología, basada en la naturaleza, permite incrementar la extracción del dióxido de carbono atmosférico y su almacenamiento en el océano. Un nuevo estudio analiza su impacto en la seguridad de los ecosistemas marinos. 


Eva Rodríguez


El océano almacena y absorbe una cuarta parte de las emisiones de COgeneradas por la actividad humana que calientan el planeta. Sin embargo, a pesar de la función del mar para mitigar los efectos de la crisis climática actual, su capacidad de almacenamiento es limitado.

Numerosos informes e investigaciones apuntan a que el descenso en la captación de CO2 por parte del océano puede ocurrir a medida que el calentamiento global es más pronunciado.

Un nuevo estudio, publicado en la revista Science Advances, liderado por el científico español Nicolás Sánchez, biólogo marino del grupo de investigación del profesor Ulf Riebesell en el Centro Helmholtz de Investigación Oceánica (GEOMAR), en Alemania, aborda la posibilidad de incrementar la alcalinidad del océano. Esta tecnología se basa en procesos naturales para el almacenamiento y extracción del dióxido de carbono, pero sus repercusiones en ecosistemas marino se desconocen.

“La alcalinización persigue acelerar y ampliar el sumidero de carbono de los océanos mediante el uso de ciertos minerales, cómo los carbonatos y los silicatos”, explica a SINC Sánchez.

La alcalinización persigue acelerar y ampliar el sumidero de carbono de los océanos mediante el uso de ciertos minerales

Nicolás Sánchez, biólogo marino de GEOMAR

De esta forma, la alcalinidad del agua de mar aumenta, se desplaza el equilibrio del carbono hacia los bicarbonatos y los carbonatos, lo que provoca que exista más espacio para que el CO2 sea absorbido sin acidificar aún más los océanos. “Se sabe muy poco sobre las consecuencias que estas perturbaciones a la química del agua podrían tener en la vida marina”, apunta el biólogo marino.

Reducir emisiones, también las históricas

En sus informes más recientes, el Grupo Intergubernamental de Expertos sobre el Cambio Climático, IPCC, indica que para mitigar con éxito el cambio climático, manteniendo el aumento de la temperatura media por debajo de 2° C (preferiblemente 1,5° C), no solo es necesario reducir drásticamente nuestras emisiones de CO2, sino también eliminar de forma activa y permanente una fracción de nuestras emisiones históricas.

“El cambio climático, o el conjunto de consecuencias derivadas de la emisión humana de gases de efecto invernadero bien podría ser el mayor reto al que nos enfrentamos en la actualidad. El CO2 es uno de dichos gases que atrapan el calor, y sus niveles han aumentado casi un 50 % desde la revolución industrial”, asevera el científico.

El cambio climático, o el conjunto de consecuencias derivadas de los gases de efecto invernadero, podría ser el mayor reto al que nos enfrentamos en la actualidad

Nicolás Sánchez

En este contexto, varios grupos científicos han experimentado con múltiples técnicas para eliminar el CO2 del aire, denominadas tecnologías para la eliminación del dióxido de carbono (CDR, por sus siglas en inglés).

“Algunas técnicas CDR son puramente tecnológicas, mientras que otras utilizan la naturaleza como aliada. Entre éstas últimas se encuentra el aumento de la alcalinidad oceánica (OAE, por sus siglas en inglés) que se inspira en el proceso natural de meteorización de las rocas, responsable de equilibrar el ciclo del carbono, aunque a escalas de tiempo muy lentas”, apunta Sánchez.

De hecho, este es el proceso responsable de que los océanos ya hayan absorbido de forma natural entre una cuarta y una tercera parte de nuestras emisiones de carbono.

Experimento llevado a cabo en Canarias. / Ulf Riebesell

Experimento llevado a cabo en Canarias. / Ulf Riebesell

Pruebas en Gran Canaria

El equipo científico evaluó los impactos ambientales de una alcalinización equilibrada, una aplicación en la que el agua alcalinizada ya ha absorbido el CO2 necesario para su objetivo de eliminación de dióxido de carbono antes de ser liberada al medio ambiente.

“En comparación con otras aplicaciones de OAE, el enfoque equilibrado es moderado en cuanto a sus impactos en la química del agua”, asegura el experto.

Los investigadores llevaron a cabo un experimento en Gran Canaria, entre septiembre y octubre de 2021, utilizando mesocosmos KOSMOS, es decir, tubos de ensayo gigantes que encierran 8 metros cúbicos de agua junto con su comunidad de plancton.

Simulamos una alcalinización equilibrada, al utilizar concentraciones precisas de carbonato sódico y bicarbonato

Nicolás Sánchez

“Simulamos una alcalinización equilibrada, al utilizar concentraciones precisas de carbonato sódico y bicarbonato, en gradiente creciente de intensidades que iban de la alcalinidad natural, hasta su duplicación”, continúa.

Durante 33 días se realizó un seguimiento del ecosistema, con especial atención al zooplancton, un eslabón clave en la transferencia de energía y nutrientes de las microalgas a los peces. “Se estudiaron múltiples propiedades de dicho zooplancton, desde su diversidad, biomasa y producción hasta su nivel trófico y su contenido y composición en ácidos grasos”, señala Sánchez.

Impacto en el zooplancton

En general, el equipo solo detectó impactos menores, que fueron limitados, es decir, no alteraron las propiedades nutricionales del zooplancton como alimento para peces; y transitorios, se disiparon en la segunda mitad del experimento.

“Por un lado, podría ser que las perturbaciones químicas moderadas infligidas por el enfoque equilibrado no supusieran un estrés fisiológico para la comunidad de zooplancton estudiada. Por otro, la calidad nutricional de la materia particulada, de la que potencialmente se alimenta el zooplancton, pareció deteriorarse con la alcalinización. Sin embargo, esto no pareció afectar al zooplancton”, asegura el científico.

Otras técnicas, cómo la OAE no equilibrada y/o basada en partículas, están asociadas a perturbaciones más severas y requieren ser investigadas en profundidad

Nicolás Sánchez

Que este hecho se produjera a finales de verano y principios de otoño, en una región subtropical, puede explicar por qué estos efectos no se propagaron a través de la red trófica. “Es posible que el zooplancton no se viera afectado por la disminución de la calidad de su alimento porque la cantidad de alimento disponible ya era limitante”, puntualiza Sánchez.

Este estudio proporciona una primera evaluación los impactos que la alcalinización puede tener en una red trófica compleja, lo que acerca a los investigadores a poder definir un marco operativo seguro, desde el punto de vista medioambiental, para su aplicación.

“Otras técnicas, cómo la OAE no equilibrada y/o basada en partículas, están asociadas a perturbaciones más severas y, por tanto, requieren ser investigadas en profundidad. Del mismo modo, ambientes marinos con otros niveles de nutrientes también han ser estudiados, ya que en nuestro estudio hemos visto cómo los mecanismos tróficos indirectos pueden mediar las respuestas del zooplancton a la OAE”, concluye.

Referencia:

Nicolás Sánchez et al. «Plankton food web structure and productivity under Ocean Alkalinity Enhancement». Science Advances.

Fuente: SINCDerechosCreative Commons.